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Abstract. The gauge-invariance properties and singularity elimination of the modified perturbation theory
for QCD introduced in previous works are investigated. The construction of the modified free propagators
is generalized to include the dependence on the gauge parameter α. Further, a functional proof of the in-
dependence of the theory under the changes of the quantum and classical gauges is given. The singularities
appearing in the perturbative expansion are eliminated by properly combining dimensional regularization
with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the
α-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge-
invariance properties.
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1 Introduction

Improving the understanding of chromodynamics is an
important issue in modern particle physics [1]. Although
the small couplings at high momenta allow for the use of
perturbation theory in this region, the expansion is how-
ever unable to describe the physics at low energies. In
former works [2–6] we have been considering the devel-
opment of a modified perturbation expansion, searching
to describe at least some low-energy properties. The pro-
posed scheme [2] conserves color and Lorentz invariance.
Indeed, it was motivated by the aim of eliminating the
symmetry limitations of the earlier chromomagnetic field
models [7–10]. The Feynman expansion proposed in [2] in-
cluded in the gluon propagator a term produced by the
condensation of zero-momentum gluons. Later, in [6, 11]
the interest of also including quark condensates was ar-
gued. Just in the first approximation, the modified rules
produced a non-vanishing gluon condensation parameter
〈g2G2〉 [12]. Afterwards, in [2], a non-zero tachyon mass
for the gluons was evaluated at the one-loop level. This
outcome was consistent with the conclusion in [13] about
the tachyon character of the normal Green functions in the
presence of a gluon condensate [14, 15]. Also, the one-loop
effective potential as a function of the condensate param-
eter indicated its dynamic generation. The plausibility of
modifying the Feynman rules of QCD, including gluon con-
densation, was also foreseen in [16]. In this work a filling
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of gluon states for all momenta k < Λqcd, was assumed in
defining an alternative free vacuum state, upon which to
connect the color interaction.
The addition of a delta-function term at zero momen-

tum in the gluon propagator had also been investigated
in [17, 18]. The aim was to develop a phenomenological
model for meson resonances, showing a confining inter-
quark potential. The multiplicative constant of the delta
function had the opposite sign with respect to the one
chosen in [3, 5]. For this selection of the sign, the singular-
ities of the quark propagator showed no pole on the real
p2 axis [18]. Thus, the results led to a physical description
different from that in [2–5].
The expansion examined in [2] was derived in [3, 5] as

the result of the adiabatic connection of the color interac-
tion, upon a particularly constructed free physical state.
The operator quantization scheme of Kugo and Ojima [19,
20] allowed this state to be determined by the creation
of zero-momenta gluons and ghost particles. The propa-
gators considered in [2] then emerged as generating the
Wick expansion. The annihilation of the modified vacuum
by the action of the Becchi–Rouet–Stora–Tyutin (BRST)
charge assured its physical character at zero coupling. It
also followed that the parameter describing the condensa-
tion should be real and positive. This specific definition,
in our case, discarded the possibility of fixing the sign of
the factor multiplying the delta function, in the way cho-
sen in [17, 18]. It should be added that the propagators
employed by Munczek and Nemirovsky were also obtained
in [21], as generated by the Wick expansion from a vacuum
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including condensed gluons in a squeezed state. It may be
that the BRST physical condition also could be satisfied by
that class of states. Then, their alternative approach could
be constructed along the same lines. The difference in the
end results for these two treatments might be related with
the fact that two different kinds of “squeezed” gluon states
were employed [21].
In the present work, we consider the investigation of the

gauge invariance and regularization properties of the modi-
fied expansion under study. Our main objectives will be:

(a) to generalize the procedure to arbitrary values of the
gauge parameter α

(b) to eliminate the infrared singularities appearing as
a consequence of the delta-function structure of the
new propagators

(c) to present the formal proof of the Ward–Takahashi–
Slavnov identities and the gauge-parameter indepen-
dence of the physical quantities, and finally

(d) to check the satisfaction of the gauge independence of
the effective action and the transversality of the gluon
self-energy at zero values of the mean fields, to second
order in the coupling g and all orders in the expansion
in the condensate parameters.

Section 2 starts by presenting the initial state to be used
in the Wick expansion formula. It is then employed in the
derivation of the modified propagators. At this point, the
invariant functions appearing as the results of the commu-
tators defining all the propagators are modified by imple-
menting the Nakanishi procedure for the infrared regular-
ization of these functions [22]. This procedure allows us to
show that all the Feynman parts of the propagators are reg-
ularized to be equal to zero in a small neighborhood of the
origin in momentum space. The size of the vanishing re-
gion is fixed by the Nakanishi regularization parameter σ.
This is a basic outcome that further allows the elimination
of a large class of the singularities generated by the delta-
function character of the modified propagators.
Section 3 is devoted to deriving the Ward–Takahashi–

Slavnov (WTS) identities corresponding to the Green func-
tions in the modified expansion [23–25]. They fully coin-
cide with those in the usual theory (PQCD). This outcome
is suggested after considering that the modified propaga-
tors are allowed inverse kernels of the tree-level inverse
propagators of massless QCD. The generating functional of
the Green functions is transformed into a Feynman inte-
gral form, only differing in the boundary conditions on the
fields, from the standard one in PQCD.
In Sect. 4, we formulate a procedure for the elimination

of the infrared singularities appearing in any order of the
perturbative expansion due to the δ(p) form of the con-
densate terms. These divergences can be cancelled in two
ways. The first one is using the dimensional regularization
for the Dirac’s delta function evaluated at zero momen-
tum. As was shown in [26], in the case of spatial arguments,
these expressions can be made to vanish in dimensional
regularization. An identical proof is employed here to ar-
gue the same conclusion for momentum-space arguments.
Using this rule, a large class of the singular terms are re-
moved. The second recourse leading to a vanishing result

for the remaining singular terms is the Nakanishi infrared
regularization described in Sect. 2. Specifically, the equal-
ity to zero of the Feynman contribution to the gluon, quark
and ghost propagators in the neighborhood of p = 0 (of
a size fixed by the Nakanishi parameter σ) allows us to can-
cel the remaining singularities. Since these singular terms
arise from the evaluation of the Feynman propagators at
zero momenta, this is simply obtained after setting the
absolute values of the momenta at which the condensate
states are created, being sufficiently smaller than σ.
Then, Sect. 6 presents the checking of the transversality

of the polarization tensor and the gauge-parameter inde-
pendence of the effective action evaluated at zero value of
the mean fields. This is done here up to second order in the
coupling constant and any order in the condensate param-
eters. Afterwards, comments on the results and possible
directions of their future extension are given in a summary.
Finally a resume of the Kugo–Ojima quantization pro-

cedure for free massless QCD for general value of the gauge
parameter α, and a complementary calculation, are given
in Appendices A and B, respectively.

2 Modified Feynman expansion

2.1 The initial vacuum for the Wick series

Let us consider in what follows the selection of the ini-
tial vacuum state of free QCD upon which the interaction
will be connected. It will be a generalization of the previ-
ously defined one in [3, 5], but physically equivalent to it,
since its physical part (the transverse gluons part) is not
modified. The changes appear only in the non-physical sec-
tor, which we choose the most general possible in order
to have a wider freedom in the selection of the resulting
propagators. The main elements of the Kugo−Ojima oper-
ator quantization of the free massless QCD for an arbitrary
gauge parameter α are reviewed in Appendix A. The re-
sume collects the equations of motion and commutation
relations between the fields and the creation and annihi-
lation operators. The definitions of the invariant functions
and the various sorts of wave packets to be employed below
can also be found there. The vacuum state will be defined
in the form

| Ψ〉= exp

⎧
⎨

⎩

8∑

a=1

∑

pi,|pi|=P<σ

[
∑

λ=1,2

Cλ (P )

2
Aa+pi,λA

a+
pi,λ

+C3 (α, P )
(
Ba+pi A

L,a+
pi
+ica+pi c

a+
pi

)

+D (α, P )Ba+pi B
a+
pi

]

+
∑

s=1,2

∑

pi,qi,|pi,qi|=P<σ

Cpi,qib
s+
qi
as+pi

⎫
⎬

⎭
| 0〉 .

(1)

The gluon (first part of the exponential) and quark (sec-
ond part of the exponential) pairs defining the state are
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created for a set of small but non-vanishing momenta pi in
order to avoid the difficulties occurring if they are directly
chosen to have zero momentum. A sum over the set pi for
|pi|= P < σ is introduced, to have freedom in eliminating
any preferential direction in the space, remaining after the
Nakanishi parameter is taken in the limit σ→ 0.
In order to simplify the exposition, we evaluate gluon

expressions below for a generic mode of given color a and
momentum pi indices. This can be done because for the
free theory, and for the specific quantities to be evaluated,
contributions of different modes can be worked out inde-
pendently, thanks to the commutation relations (A.6). At
the necessary point in the discussion, all contributions will
be included.
The proof that the proposed state (1) satisfies the re-

quired BRST physical-state conditions,

QB | Ψ〉= i
∑

k,a

(
ca+k B

a
k−B

a+
k c

a
k

)
| Ψ〉= 0 ,

QC | Ψ〉= i
∑

k,a

(
ca+k c

a
k+ c

a+
k c

a
k

)
| Ψ〉= 0 ,

proceeds as follows.
Using the commutation relations (A.6), the state | Ψ〉 in

(1) can be written in the form

| Ψ〉= exp
(
D (α, P )Ba+pi B

a+
pi

)
| Φ〉 ,

where | Φ〉 has the form

| Φ〉= exp
[
C1 (P )A

a+
pi,1
Aa+pi,1+C2 (P )A

a+
pi,2
Aa+pi,2

+C3 (α, P )
(
Ba+pi A

L,a+
pi
+ica+pi c

a+
pi

) ]
| 0〉

and satisfies the physical-state conditions, as was probed
in [3, 5],

QB | Φ〉=QC | Φ〉= 0 .

The commutation relations (A.6) also allow one to show
that

[
QB, exp

(
D (α, P )Ba+pi B

a+
pi

)]
= 0 ,

[
QC , exp

(
D (α, P )Ba+pi B

a+
pi

)]
= 0 .

Hence

QB | Ψ〉= exp
(
D (α, P )Ba+pi B

a+
pi

)
QB | Φ〉= 0 ,

QC | Ψ〉= exp
(
D (α, P )Ba+pi B

a+
pi

)
QC | Φ〉= 0 .

The state (1) is then a physical state of the free theory.
The non-physical sector of | Ψ〉 is undetectable in the phys-
ical world and can be neglected when calculating physical
quantities like the norm, energy, and particle number.
As stated before, the physical sector of (1) is the same

as proposed in previous work [3, 5]; then for the calculation
of the norm a similar result is obtained:

N = 〈Ψ | Ψ〉

=
∏

λ=1,2

8∏

a=1

∏

pi,|pi|=P<σ

[
∞∑

m=0

|Cλ (P )|
2m (2m)!

(m!)2

]

,

for |Cλ (P )|< 1 .

The normalized physical vacuum state is defined as

| Ψ̃〉=
1
√
N
| Ψ〉 . (2)

The modifications introduced in the usual perturbation
theory by the state (1) are calculated in this section for ar-
bitrary values of the gauge parameter α. For this purpose
the expressions derived in [5, 28] for the Green function
generating functional of a free theory are used

Z0[j, ξ, ξ, η, η] = Z
g
0 [j] Z

q
0 [η, η] Z

gh
0 [ξ, ξ] , (3)

Zg0 [j] = 〈Ψ̃ |T exp

(

i

∫

dx jµ (x)Aµ (x)

)

|Ψ̃ 〉

= 〈Ψ̃ | exp

(

i

∫

dx jµ (x)A−µ (x)

)

× exp

(

i

∫

dy jµ (x)A+µ (x)

)

|Ψ̃〉

× exp

(∫

dx dy θ(y0−x0)j
µ (x)

×
[
A−µ (x) , A

+
ν (y)

]
jν(y)

)
, (4)

= Zg,m0 [j]Zg,F0 [j] , (5)

Zq0 [η, η] = 〈Ψ̃ | exp

(

i

∫

dx

×
[
η (x)ψ− (x)+ψ

−
(x) η (x)

]
)

× exp

(

i

∫

dy
[
η (x)ψ+ (x)+ψ

+
(x) η (x)

])

×|Ψ̃〉 exp

(∫

dx dy η(y)
[
θ(x0−y0)

×
{
ψ− (y) , ψ

+
(x)

}
− θ(y0−x0)

×
{
ψ+ (y) , ψ

−
(x)

}]
η(x)

)

, (6)

= Zq,m0 [η, η]Zq,F0 [η, η] , (7)

Zgh0 [ξ, ξ] = 〈Ψ̃ | exp

(

i

∫

dx

×
[
ξ (x) c− (x)+ c− (x) ξ (x)

]
)

× exp

(

i

∫

dy
[
ξ (x) c+ (x)+ c+ (x) ξ (x)

]
)

×|Ψ̃〉 exp

(∫

dx dy ξ(y) [θ(x0−y0)

×
{
c− (y) , c+ (x)

}
− θ(y0−x0)

×
{
c+ (y) , c− (x)

}]
ξ(x)

)

, (8)

= Zgh,m0 [ξ, ξ]Zgh,F0 [ξ, ξ] , (9)

where the color and spinor indices are implicit. As is clear
from the above formulae, the changes in the gluon, quark
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and ghost generating functionals with respect to the stan-
dard ones in PQCD are given by the factors

Zg,m0 [j] = 〈Ψ̃ | exp

(

i

∫

dx jµ (x)A−µ (x)

)

× exp

(

i

∫

dy jµ (x)A+µ (x)

)

|Ψ̃ 〉 ,

Zq,m0 [η, η] = 〈Ψ̃ | exp

(

i

∫

dx
[
η (x)ψ− (x)+ψ

−
(x) η (x)

])

× exp

(

i

∫

dy
[
η (x)ψ+ (x)+ψ

+
(x) η (x)

])

×|Ψ̃〉 ,

Zgh,m0 [ξ, ξ] = 〈Ψ̃ | exp

(

i

∫

dx
[
ξ (x) c− (x)+ c− (x) ξ (x)

]
)

× exp

(

i

∫

dy
[
ξ (x) c+ (x)+ c+ (x) ξ (x)

]
)

×|Ψ̃〉 , (10)

which all reduce to unity in the case of the standard
PQCD.
Let us now explicitly state the infrared regularization

rules of the expansion to be considered.

(a) The invariant functions D and E, in terms of which
the commutators (anti-commutators) defining the
standard Feynman propagators are expressed, will be
assumed to be given by the Nakanishi infrared regu-
larized expressions

D(±) (x−y|σ,m) =±

∫
dk

(2π)3
θ(±k0−σ)δ(k

2−m2)

× exp(−ik(x−y)) ,

E(±) (x−y|σ) =
1

2

1

∇2(x−y)

[

(x0−y0)
∂

∂(x0−y0)
−1

]

× lim
m→0

D(±) (x−y |σ,m) . (11)

(b) For the evaluation of the changes in the propagators
produced by the condensation, which are physically
related to the zero-momentum modes of the theory,
the unmodified field operators will be used. In add-
ition, the spatial momenta for which gluon and quark
condensate states are created will be assumed to lie
well within a small neighborhood of p= 0. The radius
P of this region will be chosen much smaller than the
Nakanishi parameter σ in (11).

Let us consider in what follows the evaluation of
the various Feynman propagators following the above
prescriptions.

2.2 Regularized Feynman propagators

2.2.1 Gluons

The Feynman propagator for the gluons is determined by
the commutator between the creation and annihilation

parts of their field operators. After substituting (A.4) in
this commutator, the expression can be transformed in the
following way:

[
Aa−µ (x) , A

b+
ν (y)

]
=−δabgµνD+ (x−y |0)− (1−α) δ

ab

×

(

∂yνD
( 12 ) (y)

∑

k

g∗k(y) fk,L,µ(x)

+∂xνD
( 12 ) (x)

∑

k

gk(x)f
∗
k,L,µ(y)

)

= lim
σ→0

(
−δab [gµνD+ (x−y |σ, 0)

− (1−α)∂yν ∂
x
µ E+ (x−y |σ)

])
,

(12)

where we have defined D± (x−y |0) = limσ→0D±(x− y |
σ, 0). In the last line of this relation, in which the commu-
tator has been expressed in terms of the invariant func-
tions, the Nakanishi regularization (11) has been intro-
duced. The functions taken for a finite value of σ will be
employed in what follows, defining in this way the regular-
ized propagators.
Substituting the above formula in the quadratic form in

the gluon sources defining the Feynman contribution Zg,F0
for the generating functional in (14), we now have the form

ST =

∫

dx dy θ(y0−x0)j
µ (x)

[
A−µ (x) , A

+
ν (y)

]
jν(y)

=
1

2

∫

dxdy jµ,a(x)gµν [θ(y0−x0)D+ (x−y |σ, 0)

+θ(x0−y0)D+ (y−x |σ, 0)] j
ν,a(y)

+
(1−α)

2

∫

dxdy ∂xµj
µ,a(x) [θ(y0−x0)E+ (x−y |σ)

+θ(x0−y0)E+ (y−x |σ)] ∂
y
ν j
ν,a(y)

=
1

2

∫

dxdy jµ,a(x)gµνDF(x−y|σ)j
ν,a(y)

+
(1−α)

2

∫

dx dy ∂xµj
µ,a(x)EF(x−y |σ)∂

y
ν j
ν,a(y)

= SD+SE , (13)

where, in order to shift the derivatives to act on the
sources, the following properties have been used:

∂yν∂
x
µ [EF(x−y |σ)] =∂

y
ν∂
x
µ [θ(x0−y0)E+(x−y|σ )

−θ(y0−x0)E−(x−y |σ)]

=
[
θ(x0−y0)∂

y
ν∂
x
µE+(x−y |σ)

−θ(y0−x0)∂
y
ν∂
x
µE−(x−y |σ)

]
,

in which we have defined ∂µ = ∇µ+uµ∂0 with ∇µ ≡
(0, ∂1, ∂2, ∂3), uµ ≡ (1, 0, 0, 0), and the final equality follows
because the delta functions evaluate the factors (E+(x−
y)+E−(x−y)) at x0 = y0, where E+(x−y|σ) =−E−(x−
y|σ) is satisfied. Then the Feynman propagator contribu-
tion to the generating functional of the gluons takes the
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form

exp(SD+SE) = exp

(∫

dx dy θ(y0−x0)j(x)

×
[
A− (x) , A+ (y)

]
j(y)

)

(14)

= exp

[
1

2

∫

dx dy jµ,a(x)gµνDF(x−y|σ)

× jν,a(y)+
(1−α)

2

∫

dx dy ∂xµj
µ,a(x)

×EF(x−y |σ)∂
y
ν j
ν,a(y)

]

,

where DF(x− y|σ) indicates the Feynman term in the
modified gluon propagator for α= 1, although it differs by
a constant multiplicative factor from the usual definition.
The generating functional expressed in momentum

space for the gluons can be obtained now by passing the
quadratic integrals on the sources to the Fourier represen-
tation. The following convention for the Fourier transform
of any quantity Q and the Fourier transform of the Heavi-
side function will be used:

Q(x) =

∫
dq

(2π)4
Q(q) exp(−iqx)

≡

∫
dq

(2π)4
FT (Q(x)|x, q) exp(−iqx) , (15)

θ(x0) =

∫ ∞

−∞

dq0
2π

i

q0+iε
exp(−iq0x0) . (16)

Let us consider first the second term in the argument
of the exponential of SE , which is the most involved one.
After substituting the Fourier representations (15) for the
sources, the Heaviside function (16) and (A.3), we can
obtain

SE =−
(1−α)

2

∫
dk

(2π)4
kµjaµ(−k) [FT (θ(z0)E+(z|σ)|z, k)

+FT (θ(z0)E+(z|σ)|z,−k)] k
νjaν (k) .

(17)

The first Fourier transform in the integrand of (17),
after substituting the definition (11) of the E function and
the Fourier representation (16) of θ(z0), can be obtained in
the form

FT (θ(z0)E+(z|σ)|z, k) =
i θ(|
−→
k |−σ) (2|

−→
k |−k0)

−4|
−→
k |3(k0−|

−→
k |+iε)2

.

Since the second Fourier transform in the integrand of
(17) is simply the first one, but with the integration mo-
mentum k argument replaced by−k, adding the two terms

leads to

SE =
(1−α)

2

∫
dk

(2π)4
kµjaµ(−k)

[
i θ(|
−→
k |−σ)(2|

−→
k |−k0)

−4|
−→
k |3(k0−|

−→
k |+iε)2

+
i θ(|
−→
k |−σ) (2|

−→
k |+k0)

−4|
−→
k |3(−k0−|

−→
k |+iε)2

]

kνjaν (k)

(18)

=−
(1−α)

2

∫
dk

(2π)4
kµjaµ(−k)

i θ(|
−→
k |−σ)

(k2+iε)2
kνjaν (k) .

(19)

For the terms in (14) associated to the invariant func-
tion D, a similar but much simpler calculation, thanks to
the absence of dipole fields, allows us to obtain

SD =

∫
dk

(2π)4
jaµ(−k)

i θ(|k|−σ)

2(k2+iε)
gµνjaν (k) ,

which, inserted in (14) gives for the regularized gluon Feyn-
man factor in the free generating functional the expression

Zg,F0 [j] = exp

(
i

2

∫
dk

(2π)4
jµ,a(−k)

i θ(|k|−σ)

(k2+iε)

×

[

gµν −
(1−α)kµkν
(k2+iε)

]

jν,a(k)

)

.

2.2.2 Ghosts and quarks

In a similar way, the regularized ghost and quark propaga-
tors (the quark taken in the massless limit m→ 0) can be
obtained in the forms

Zq,F0 [η, η] = exp

(

i

∫
dk

(2π)4
η(−k)

−θ(|
−→
k |−σ)kµγµ

k2+iε
η(k)

)

,

(20)

Zgh,F0 [ξ, ξ] = exp

(

i

∫
dk

(2π)4
ξ(−k)

−iθ(|
−→
k |−σ) δab

k2+iε
ξ(k)

)

.

(21)

Therefore, the Nakanishi regularization leads to the
vanishing of all the Feynman propagator terms within
a tube containing k = 0 and defined by the momenta hav-
ing modulus of their spatial component smaller that σ,
for arbitrary values of the temporal component k0. In this
way, as will be seen further in the discussion, the adop-
tion of this regularization procedure naturally leads to the
cancelation of a great number of the singularities in the
perturbative expansion.

2.3 Condensation-induced changes
in the propagators

The effects on the propagators of the gluons and quarks
created by the condensation of gluons, quarks and ghost in
the free ground state will be considered in this subsection.
Let us separately examine the two cases.
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2.3.1 Gluons

Taking into account the expressions (A.4), the gluon anni-
hilation and creation parts in (10) can be explicitly written
as

Aa+µ (x) =
∑

k

(
∑

λ=1,2

Aak,λf
λ
k,µ (x)+A

L,a
k fk,L,µ (x)

+Bak

[
fk,S,µ (x)+ (1−α) (A (k0, x0) fk,L,µ (x)

+Bµ (k, x))
]
)

, (22)

Aa−µ (x) =
∑

k

(
∑

λ=1,2

Aa+k,λf
λ∗
k,µ (x)+A

L,a+
k f∗k,L,µ (x)

+Ba+k

[
f∗k,S,µ (x)+ (1−α)

(
A∗ (k0, x0) f

∗
k,L,µ (x)

+B∗µ (k, x)
) ]
)

,

where A (k0, x0) and Bµ (k, x) are defined as

A (k0, x0)≡
1

2 |k|2
(ik0x0+1/2) ,

Bµ (k, x)≡
ik0δµ0

2 |k|2
gk(x) .

On arriving to (22), the term of ∂µD
(1/2)
(x) gk(x) in (A.4)

was evaluated by using the wave packets and polarization
vectors of (A.5) with the result

∂µD
(1/2)
(x) gk(x) = ∂µ1/2(∇

2)−1(x0∂0−1/2)

×
1

√
2V k0

exp (−ikx)

=A (k0, x0) fk,L,µ (x)

+Bµ (k, x) , (23)

which defined A (k0, x0) andBµ (k, x). In a similar way, for

∂µD
(1/2)
(x) g

∗
k(x) we obtained

∂µD
(1/2)
(x) g

∗
k(x) =A

∗ (k0, x0) f
∗
k,L,µ (x)

+B∗µ (k, x) . (24)

As commented on in Appendix A, the transverse term
is not modified by the generalization of the theory for
arbitrary values of α. Then its contribution is the same
as calculated previously [3, 5]. It is important to recall
that thanks to the diagonal block structure commuta-
tion relations (A.6) the calculations are done by decom-
posing the expression (10) in products of contributions
coming from separate modes associated to the diagonal
blocks.

The result obtained in [3, 5] for the transverse-mode
contributions, for |Cλ (pi)|< 1, is

1

N
〈0 | exp

⎛

⎝
∑

λ=1,2

C∗λ (P )

2
Aapi,λA

a
pi,λ

⎞

⎠

× exp

⎧
⎨

⎩
i

∫

dxJµ,a (x)
∑

λ=1,2

Aa+pi,λf
λ∗
pi,µ
(x)

⎫
⎬

⎭

× exp

⎧
⎨

⎩
i

∫

dxJµ,a (x)
∑

λ=1,2

Aapi,λf
λ
pi,µ
(x)

⎫
⎬

⎭

× exp

⎛

⎝
∑

λ=1,2

Cλ (P )

2
Aa+pi,λA

a+
pi,λ

⎞

⎠ | 0〉,

= exp

⎧
⎨

⎩
−
∑

λ=1,2

(
Japi,λ

)2

(
Cλ (P )+C

∗
λ (P )+2 |Cλ (P )|

2
)

2
(
1−|Cλ (P )|

2
)

⎫
⎬

⎭
,

(25)

where the normalization factor has been canceled. It
should be recalled that the momenta pi are very small and
the sources are assumed to be located in a finite spatial re-
gion. The following simplified notation was also introduced
in [3, 5]:

japi,λ =

∫
dx

√
2V pi0

jµ,a (x) ελ,µ (pi) .

The calculation of longitudinal and scalar-mode contri-
butions is, on this occasion, more elaborate, and a brief
exposition of it can be found in Appendix A; the result ob-
tained for |C3 (α, P )|< 1 is

exp

{

−

∫
dxdy

2V pi0
Jµ,a (x)Jν,a (y)

×

[⎛

⎝
C3 (α, P )+C

∗
3 (α, P )+2 |C3 (α, P )|

2

(
1−|C3 (α, P )|

2
)

⎞

⎠

×
(
εS,µ (pi) εL,ν (pi)+

(1−α)

4 |pi|
2 [εL,µ (pi)+ i2pi0δµ0]

× εL,ν (pi)
)

+

⎛

⎜
⎝
D∗ (α, P ) (C3 (α, P )+1)

2
+D (α, P ) (C∗3 (α, P )+1)

2

(
1−|C3 (α, P )|

2
)2

⎞

⎟
⎠

× εL,µ (pi) εL,ν (pi)

]}

(26)

×〈0 | exp
(
C∗3 (α, P )B

a
pi
AL,api +D

∗ (α, P )BapiB
a
pi

)

× exp
(
C3 (α, P )B

a+
pi
AL,a+pi

+D (α, P )Ba+pi B
a+
pi

)
| 0〉 ,

where the normalization factor (last line) is equal to one.
Now inserting expressions (25) and (26) in (10), perform-
ing some algebraic manipulations (keeping in mind the
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properties of the polarization vectors defined in (A.5)), as-
suming C1 (P ) = C2 (P ), and introducing the contribution
of all momenta pi (|pi| = P ), the following expression is
obtained:

exp

{∫
dxdy

2V
Jµ,a (x)Jν,a (y)

×
∑

pi,|pi|=P

1

pi0

[⎛

⎝
C1 (P )+C

∗
1 (P )+2 |C1 (P )|

2

2
(
1−|C1 (P )|

2
)

⎞

⎠ gµν

+

⎛

⎝
C3 (α, P )+C

∗
3 (α, P )+2 |C3 (α, P )|

2

(
1−|C3 (α, P )|

2
)

−
C1 (P )+C

∗
1 (P )+2 |C1 (P )|

2

(
1−|C1 (P )|

2
)

⎞

⎠
p̄iµpiν

2 |pi|
2

+

⎛

⎝
C3 (α, P )+C

∗
3 (α, P )+2 |C3 (α, P )|

2

(
1−|C3 (α, P )|

2
)

⎞

⎠
(1−α)

4 |pi|
2

× (piµpiν −2pi0δµ0piν)

+
D∗ (α, P ) (C3 (α, P )+1)

2
+D (α, P ) (C∗3 (α, P )+1)

2

(
1−|C3 (α, P )|

2
)2

×piµpiν

]}

. (27)

It is important to notice at this point that the combina-
tions ofC1 (P ),C3 (α, P ), andD

∗ (α, P ) in (27) are real. So
that even if these parameters are complex, only their real
parts contribute to the propagator. After this observation,
they will be considered real in what follows.
In expression (27) we take the thermodynamic limit

(V →∞), replace sums by integrals,

1

V

∑

pi,|pi|=P

=
1

(2π)
3

∞∫

0

dp p2δ (p−P )

π∫

0

sin θdθ

2π∫

0

dϕ ,

(28)

and perform the integrations.
As a second step, we proceed to take the limit P → 0;

for that we consider that the parameters introduced in the
modified vacuum state to be

C1 (P )∼ 1−
C1

2
P, C1 > 0,

C3 (α, P )∼ 1−
C3 (α)

2
P, C3 (α)> 0,

D (α, P )∼D (α) . (29)

After that, the result obtained for (27) in the limit P →
0 is

exp

{∫

dxdyJµ,a (x)Jν,a (y)

[
2gµν

(2π)2C1

+
2

3 (2π)2

(
1

C3 (α)
−
1

C1

)

(gµν +2δµ0δν0)

−
(1−α)

(2π)
2
3C3 (α)

(gµν+2δµ0δν0)

−
4D (α)

(2π)
2
3 [C3 (α)]

2 (gµν −4δµ0δν0)

]}

. (30)

In order to make explicit the Lorentz invariance, we fix
D (α), such that the terms proportional to δµ0δν0 cancel
out. ThenD (α) is determined by the expression

D (α) =
[C3 (α)]

2

4

[
1

C1
−
(1+α)

2C3 (α)

]

,

and (30) takes the form

exp

{∫

dxdyJµ,a (x)Jν,a (y)
gµν

(2π)
2

(
1

C1
+
(1+α)

2C3 (α)

)}

.

(31)

In expression (31) we notice that the term in the ex-
ponential is real and non-negative. This is because C1 > 0,
C3 (α) > 0 and α≥ 0 (α must be non-negative for the con-
vergence of the Gaussian integral in which it was intro-
duced in the path integral formalism. It can be stressed
at this point, that, if it could be possible to justify the
validity of the recursive solution as an analytical exten-
sion in the parameters, it seems possible to trace a con-
nection with the approach of [17, 18, 21]). As a final step,
we chose the parameter C3 (α) in such a way that the de-
termined modification does not depend on the gauge pa-
rameter α, as it was selected in an earlier work [2]. Then
C3 (α) =

1
2KC1 (1+α), withK a positive constant.

Considering the above remarks and defining in the
generating functional modification an alternative non-

negative constant Cg =
2(2π)2

C1

(
1+ 1

K

)
(which we call the

condensate parameter) for further convenience, expression
(31) takes the form

exp

{∫

dxdy
8∑

a=1

Jµ,a (x) Jν,a (y)
gµνCg

(2π)
4
2

}

.

From the above construction, the parameter D (α) =
D (1+α)2, where D is an arbitrary real constant (equal to
zero for K = 1), and the vacuum in the zero-momentum
limit has the form

| Ψ〉= exp

[
8∑

a=1

1

2
Aa+0,1A

a+
0,1+

1

2
Aa+0,2A

a+
0,2+B

a+
0 A

L,a+
0

+ica+0 c
a+
0 +D (1+α)

2
Ba+0 B

a+
0

]

| 0〉 , (32)
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from which the state selected in the previous works [3, 5]
corresponds to the particular case α = 1, C3 (α= 1) = C1
andD (α= 1) = 0.
Thus, it follows that the vacuum state introduced in

(32) modifies the usual perturbation theory only through
a change in the gluon propagator, which now takes the
form

Dabµν(x−y) =

∫
dk

(2π)4
δab

[
θ(|k|−σ)

k2+iε

×

(

gµν − (1−α)
kµkν

k2+iε

)

− iCgδ (k) gµν

]

× exp {−ik (x−y)} . (33)

in which the first term is the usual Feynman propagator,
but now including an infrared regularization.

2.3.2 Ghosts

The change in the ghost generating functional is the same
as calculated in [3, 5]. This is because the ghost sector in
the vacuum state remains unchanged. As was mentioned in
these references for the value C3 (α, 0) = 1 as it was fixed
here, there is no modification of the ghost sector and its
generating functional and propagator remain the same as
for the usual PQCD.

2.3.3 Quarks

Let us now consider the modification in the quark propaga-
tor produced by the presence of its condensate. The factor
corresponding to quarks in the generating functional (3)
can be written as

Zq,m0 [η, η] = 〈0 | exp

⎛

⎝
∑

s=1,2

∑

pi,qi,|pi,qi|=P<σ

C∗pi,qi a
s
pi
bsqi

⎞

⎠

× exp

{

i

∫

dx
[
η (x)ψ− (x)+ψ

−
(x) η (x)

]}

× exp

{

i

∫

dx
[
η (x)ψ+ (x)+ψ

+
(x) η (x)

]}

× exp

⎛

⎝
∑

s=1,2

∑

pi,qi,|pi,qi|=P<σ

Cpi,qi b
s+
qi
as+pi

⎞

⎠ |0〉

= 〈0 | exp
[
C∗ff ′a

s
f b
s
f ′

]
exp

{
−σfa

+
f +σfb

+
f

}

× exp
{
−σ∗f af +σ

∗
f bf

}
exp

[
Cff ′b

s+
f ′
as+f

]
| 0〉

= Zq,m0 [σ, σ]≡ Zq,m0 [v],

v ≡ (σ, σ), | q〉= exp
[
Cff ′b

s+
f ′
as+f

]
| 0〉 , (34)

where the quark-field operators were expressed as sums
over the creation and annihilation components. In order to
simplify the discussion the following compact notation has
been employed: f, f ′ = pi, i = 1, 2, 3, . . . , N. The new in-
dices, f and f ′, correspond to the values of the momenta

for which condensate states are created. The spinor indices
s= 1 or 2 have been omitted, since the discussion can be
done almost up to the end for each value of s, thanks to
the commutativity of the creation operators for different
indices. The coefficients of the quark creation and annihi-
lation operators a± and b± are expressed as

σf ≡ σ
s
k =

i
√
V

∫

dxusk η(x) exp(ikx) ,

σf ≡ σ
s
k =

i
√
V

∫

dxη(x) vsk exp(ikx) , (35)

where u and v are the usual spinor solutions of the Dirac
equation defined in Appendix A.
Let us now define the transformations U−11 =

exp(−σfa
+
f +σfb

+
f ) and U2 = exp(−σ

∗
f af +σ

∗
f bf ), which,

acting upon the creation and annihilation operators
through a similarity, lead to

U1bfU
−1
1 = bf −σf , U1afU

−1
1 = af +σf ,

U2b
+
f U

−1
2 = b

+
f +σ

∗
f , U2a

+
f U

−1
2 = a

+
f −σ

∗
f .

After also considering 〈0|U1 = 〈0| and U2|0〉= |0〉, it fol-
lows that

Zq,m0 [v] = 〈0 | exp
[
C∗f f ′(af +σf )(bf ′ −σf ′)

]

× exp
[
Cf f ′(b

s+
f ′
+σ∗f ′)(a

s+
f −σ

∗
f )
]
| 0〉 , (36)

= 〈q| exp
[
−C∗f f ′σfσf ′ −Cf f ′σ

∗
f ′σ
∗
f

]

× exp
[
−af Cf f ′σf ′ +σfCf f ′ bf ′

]

× exp
[
−a∗f Cf f ′σ

∗
f ′+σ

∗
fCf f ′ b

+
f ′

]
| q〉 .

It is now possible to employ the following identity for
operators that commute with their commutators:

exp(A) exp(B) = exp(B) exp(A) exp([A,B]) , (37)

to change the order of the exponential operators appearing
in the mean value on the quark “squeezed” state in (36).
The commutator between the two arguments of those ex-
ponentials can be calculated to be

[
−af Cf f ′σf ′ +σfCf f ′ bf ′ ,−a

∗
f Cf f ′σ

∗
f ′ +σ

∗
fCf f ′ b

+
f ′

]

=−
[
σf ′C

T∗
f ′ fCf f ′′σf ′′ +σfC

∗
f f ′ C

T
f ′ f ′′σ

∗
f ′′

]
,

which, after being considered together with (37), allows us
to write the quark modification as

Zq,m0 [v] = exp
[
−σĈσ−σ∗Ĉσ∗−σĈTĈσ∗−σĈTĈ σ∗

]

×Z
[
−Ĉ σ∗, ĈTσ∗

]
, (38)

= exp

[
1

2
v1R v1−

1

2
v∗1R v

∗
1+v1R

2 v∗1

]

Zq [RKv1] ,
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where it was assumed that Cff ′ is real, and the following
matrix notation was introduced:

σĈσ ≡ σf Cf f ′σf ′ , (Ĉ
T)ff ′ = (Ĉ)f ′f ,

v1 =

(
σ
σ

)

, R=

(
0−Ĉ
Ĉ 0

)

,

Kv1 =

(
σ∗

σ∗

)

, K2 = I,

and K is simply the complex conjugate of a vector ex-
pressed in matrix notation. Relation (38), after being ap-
plied n times, leads to the following expression:

Zq,m0 [v] = exp

{
1

2
v1R

(
n∑

m=0

R2m

)

v1−
1

2
v∗1R

×

(
n∑

m=0

R2m

)

v∗1+v1R
2

(
n∑

m=0

R2m

)

v∗1

}

×Zq
[
(KR)n+1 v1

]
.

However, the sums of powers of the matrix R can be
written in the form

n∑

m=0

R2m =

⎛

⎝

∑n
m=0(−1)

m (ĈĈT)m 0

0
∑n
m=0 (−1)

m(ĈTĈ)m

⎞

⎠ ,

which gives in the limit n→∞, assuming that all the eigen-
values of the symmetric matrix R2 are smaller than 1:

∞∑

m=0

R2m =

⎛

⎝

1

1+̂C ̂CT
0

0 1

1+̂CT ̂C

⎞

⎠=
1

1−R2
.

Hence, the modification of the quark propagator takes
the form

Zq,m0 [v] = exp

{
1

2
v1

R

1−R2
v1+

1

2
v∗1

R

1−R2
v∗1

+v1
R2

1−R2
v∗1

}

Zq[0] , (39)

where the argument of the generating functional at r.h.s. is
zero because limn→0(R

n+1) = 0, if all the eigenvalues ofR2

are assumed to be smaller than the unity. For the argument
of the exponential above it follows that

v1
R2

1−R2
v∗1 =−σ

ĈĈT

1+ ĈĈT
σ∗−σ

ĈTĈ

1+ ĈTĈ
σ∗ .

Now, assuming that the matrix C is antisymmetric and

also that it satisfies Ĉ
T
Ĉ =KÎ (with K including also

possible negative values), it follows that the sum of the first

two terms in the argument of the exponential in (39) van-
ishes. The one remaining takes the form

v1
R2

1−R2
v∗1 =

K

1−K
(σσ∗+σσ∗) =

K

1−K

(
σfσ

∗
f +σf σ

∗
f

)

=
K

1−K

∑

k

(σskσ
s∗
k +σ

s
kσ
s∗
k ) ,

where the index s= 1, 2 takes the fixed value that has been
used for the whole evaluation. Now employing the defini-
tions (35) of σ and σ and the identities

∑

s=1,2

vskv
s
k = (γ

µpµ−m) ,
∑

s=1,2

usku
s
k = (γ

µpµ+m) ,

and assuming that the momenta arguments pi are taken at
their vanishing value in the limit L→∞, it follows that

K

1−K

∑

k,s=1,2

(
σskσ

s∗
k +σ

s
kσ
s∗
k

)

=−
K

1−K

m

V

∑

k

∫

dxdy η(x) η(y) exp(ik(x−y)) ,

=−
K

1−K

m

V
N

∫

dxdy η(x) η(y) exp(ik(x−y)) ,

where the number N of the momenta for the created par-
ticles and antiparticles appears in the last line from the
assumption that for small momenta the integral appearing
is almost independent of k. Fixing K by

K =
1

1− m(L)N(2π)
4

CqL3

and considering (20) allows us to write for the change in the
quark generating functional and propagators

Zq,m0 [η, η] = exp

(

Cq

∫

dxdy η(x)η(y)

)

Zq[0] , (40)

Zq,F0 [η, η] = exp

(∫

dxdy η(x)GF(x−y)η(y)

)

Zq[0] ,

(41)

Zq0 [η, η] = exp

(∫

dxdy η(x)Gq(x−y)η(y)

)

Zq[0] ,

(42)

Gq(x−y) =

∫
dk

(2π)
4

[

−
iθ(|k|−σ)γνkν
k2+iε

+CqI δ (k)

]

× exp(−ik (x−y)) . (43)

3 Regularization of the singular terms

A main technical difficulty for the implementation of the
expansion proposed in [2–4, 6, 16] is that the modifications
of the usual free propagator terms (to be called below
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the “condensate propagators”) are given by Dirac’s delta
functions of the momenta. This circumstance produces sin-
gular Feynman diagrams in the perturbation series even
after dimensional regularization is introduced. The singu-
larities correspond with the appearance of delta functions
or standard Feynman propagators evaluated at zero mo-
mentum, after some loop integrals are performed. These
factors occur because of the momentum conservation in the
vertices of the diagrams. Let us consider a vertex having
n legs (n= 3, 4 for QCD). Then, when n−1 different con-
densate lines join to it, the momentum conservation forces
the value of the momentum at the only remaining line to
vanish. Therefore, if a condensate line is attached to this
ending, delta functions evaluated at zero momentum will
appear. On the other hand, when a usual Feynman prop-
agator is connected to this last leg, a factor equal to its
value at zero momentum appears. This situation should be
solved before a sense could be given to the modified expan-
sion. Below, we propose a way for the elimination of these
singularities, which clearly should be the subject of further
examination about its consistency. Let us separately con-
sider in what follows the two cases. It will be assumed that
the Feynman diagrams are constructed in D dimensions
and for a fixed value of the Feynman parameter ε. Before
advancing, let us precisely set the rules for the order of the
limits associated to the various regularizations that have
been done up to now.

(a) The large volume limit will be taken by taking the size
of the quantization box L going to infinity. This limit
will lead to continuous values of the momenta.

(b) The Nakanishi infrared regularization parameter σ
will be chosen as a function σ(L) of the spatial size
of the system L, vanishing as L→∞. This constant
sets to zero all the Feynman propagators for the spa-
tial momenta lying within a sphere of radius σ, and all
values of the temporal component k0.

(c) The maximal size P of the set of the spatial mo-
menta ki for which condensate states are created will
be assumed to be another function P (L) also vanish-
ing in the limit L→∞. However, it will be chosen
smaller than σ(L), in a proportion to be defined in the
following.

(d) Finally, the auxiliary massm of the quark field will be
chosen as a function m(L) tending to zero for L→∞
with a behavior to be also described below.

The limit L→∞, in which σ(L), P (L), andm(L) van-
ish, will be taken in the first place. With this step we
recover the Lorentz invariance of the Feynman diagrams
that continue to be functions of the dimensional regular-
ization parameter D, its mass scale µ, and the Feynman
constant ε.

3.1 δ(0) singularities

An idea that comes directly to mind when considering the
singular terms of the form δ(0) is that they should be
considered in dimensional regularization. But it has been
argued that the delta functions evaluated at zero spatial

coordinates can be analytically extended to continuous di-
mensionsD and, moreover, that their expressions vanish in
the limit D→ 4 [26]. This is not necessarily an un-natural
result, as it is suggested by the fact that the product of reg-
ularized functions in the sequences defining distributions,
can have a vanishing limiting result for particular con-
structions of those sequences, in spite of the singularity of
the distributions being defined. Thus, let us examine more
closely this dimensional regularization argument. We will
follow the same procedure as in [26] and interpret the delta
functions appearing as D-dimensional ones. The Wick ro-
tation of the momentum integrals will be assumed to be
already done. Then it is possible to reproduce, step by step,
the arguments of Capper and Leibbrandt [26] to conclude
that these factors should vanish after removing the dimen-
sional regularization. Let us do it below for the sake of
concreteness. For δ(0) we can write

δ(0) =

∫

E

dpD

(2π)D
.

This is a singular D-dimensional integral in Euclidean
momentum space, similar to those in real space, considered
in [26]. Then it can also be written as follows:

∫

E

dpD

(2π)D
=

∫

E

dpD

(2π)D
p2

p2
=

∫ ∞

0

ds

∫

E

dpD p2

(2 pi)D
exp(−s p2) .

However, using the redefinition of the generalizedGaus-
sian integral for continuous values of dimension D con-
structed in [26], it is possible to write

∫

E

dpD

(2π)D
exp(−s p2) =

1

(4π)
D
2

exp

[

−s f

(
D

2

)]

,

∫

E

dpD p2

(2π)D
exp(−s p2)

=
1

(4π)
D
2

[
D

2
s−(1+

D
2 )+ s−

D
2 f

(
D

2

)]

exp

[

−s f

(
D

2

)]

,

and

δ(0) =

∫ ∞

0

ds
1

(4π)
D
2

[
D

2
s−(1+

D
2 )+ s−

D
2 f

(
D

2

)]

× exp

[

−s f

(
D

2

)]

,

where f is the function introduced in [26] for extending
the generalized Gaussian integral formula to non-integral
dimension arguments. These functions vanish for all inte-
ger values of D. Then, after using the integral definition of
the Gamma function Γ (z) =

∫∞
0 dt t

z−1 exp(−t), it follows
that

δ(0) =
f(D2 )

D

(4π)
D
2

[
D

2
Γ

(

−
D

2

)

+Γ

(

1−
D

2

)]

,

which vanishes exactly in the limit D→ 4. Therefore, we
will assume that the evaluations associated to the modified
expansion will be made by using the above representation
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for the factors δ(0). As a consequence, it will be considered
that all the diagrams in which such a kind of singularities
appear will vanish in dimensional regularization.

3.2 Feynman propagator at p= 0 singularities

For the elimination of this kind of singular behavior,
the Nakanishi infrared regularization implemented on the
Feynman propagators in a previous section is specially
helpful. These singular terms are simply vanishing be-
cause of the appearance of the infrared regularizing factor
θ(|−→p |−σ) in each of the Feynman propagators, before tak-
ing the limit L→∞.
Let us examine below the loop expansion after assum-

ing the above prescriptions and the modified free propaga-
tors for a gauge parameter α

Dabgµν(p,m) =
θ(|p|−σ)δab

p2+iε

[

gµν −
(1−α)pµpν
p2+iε

]

− iCg δ
abδ(p), (44)

G
f1f2

q (p,M, S) =−
θ(|p|−σ)δf1f2pµγµ

p2+iε
+i δf1f2Cq δ(p) ,

Gabgh(p) =−
θ(|p|−σ)δab

p2+iε
,

and the standard vertices of QCD. Then, it follows that
all the diagrams having a fixed number of loops showing
that both types of singularities will vanish in the limit
L→∞. Therefore, after taking this limit, the remaining fi-
nite diagrams (due to the dimensional regularization) can
be evaluated by using non-distorted dimensionally regular-
ized propagators, following from (44) in the limit σ→ 0.
Assuming that the chosen conditions have eliminated

all the singular contributions, it is possible to comment
about some properties of the diagram series based on the
above propagators. For example, it follows that the appear-
ance of a number m of the condensate propagators within
an n-loop one-particle-irreducible (1PI) diagram will elim-
inate m of the n-loop integrals associated to this contri-
bution. Therefore, the considered diagram will now be an
“effective” (n−m)-loop one. Consider also, expressing the
condensate parameters Cg and Cq in favor of the new ones:

m2 =−
6g2Cg
(2π)4

, Sf =
g2Cq

4π4
, (45)

which incorporate a power of 2 factor of the coupling con-
stant g. Then, the n-loop 1PI diagrams of the effective
expansion, considered as power series in the new three pa-
rameters m2, Sf and g, also show the property that, given
the number of external legs of the diagram, the number
of loops is fixed by the power of g2 appearing in it. This
conclusion directly follows from the fact that each time
a condensate internal line appears, a loop integral is anni-
hilated, and correspondingly the power of g of the diagram
is reduced by 2 in the new expansion. Let us consider that
Pg is the power of g corresponding to an n-loop 1PI dia-
gram in which the parameters are the original ones. Thus

the new power of g of this diagram withm condensate lines
when the new parameters are introduced will be

P ′g = Pg−2m. (46)

It seems that this property can allow for a useful reorder-
ing of the perturbation expansion. To see an indication
for this, let us consider a particular n-loop 1PI diagram
in which the changes of the parameters (45) have been
introduced and corresponding line symbols have been as-
signed for the standard and the condensate propagators
separately. Then, for any particular standard type line in
this diagram, consider the infinite summation of all the
contributions to the connected propagator of zero order in
g (tree). Any of the added terms, by construction, have the
same number of loops, but come from higher loops in the
original expansion. This is done by considering fixed the
other standard lines. Thus, if not stopped by any difficulty
associated to the combinatorial and symmetry factors in
the diagrams, this infinite addition, it seems, can be done
for all the normal lines. The resulting modified (zero order
in the new expansion) propagators are no other things than
the ones employed in [6] in the gauge α = 1. Therefore, it
seems possible to demonstrate that the loop expansion can
be reordered to produce an alternative version with modi-
fied propagators. The investigation of this possibility will
be considered in our next work.

4 WTS identities

This section is devoted to showing that the generating
functional constructed with the modified propagators, in-
cluding condensate terms and the gauge parameter α, sat-
isfies exactly the same WTS identities as those associated
to the usual PQCD. Let us consider for the cited purpose
the complete generating functional of the theory, which can
be written in the form

Z [j, η, η̄, ξ, ξ̄
]

=exp

{

i

(
Sgikl
3!i3

δ3

δjiδjkδjl
+
Sgiklm
4!i4

δ4

δjiδjkδjlδjm

(47)

+
Sqikl
i3

δ3

δη̄iδjkδ (−ηl)
+
Sghikl
i3

δ

δξ̄iδjkδ (−ξl)

)}

×Z0
[
j, η, η̄, ξ, ξ̄

]
,

in which the concrete form of the action S assumed and
its conventions are defined in the Appendix A, and DeWitt
compact notation for the integration and summation over
the corresponding spatial, color or spinor indices was em-
ployed. The specific set of indices associated to the Latin
letters i, k, l is specified in a natural way by the particu-
lar type of field to which it is associated as a subindex. For
example in ji the meaning is i≡ (x, µ, a). The free gener-
ating functional (3) can also be expressed as a mean value
in the initial state |Ψ〉 of the evolution operator U of the
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interaction Lagrangian of the external sources, as follows:

Z0
[
j, η, η̄, ξ, ξ̄

]
= lim
T→∞

∑

n,n′

〈Ψ |U(+T,−T |j, η, η̄, ξ, ξ̄)|Ψ〉,

= 〈Ψ |T exp

{

i

∫

dx
[
j Â+ ξ ĉ+ ĉ ξ+η ψ̂

+ ̂ψ η
]
}

|Ψ〉 ,

= Z0[0, 0, 0, 0] exp

{

i
jiD

ik
g jk

2
+ iη̄iG

ik
ghηk

+iξ̄iG
ik
q ξk

}

.

Consider now two complete bases of eigenstates |q±〉
of the field operators taken at the fixed times T and −T .
Thus, for these states

Âa µ(±T,x) |q
±〉 ≡ Aaq±,µ (x) |q

±〉 ,

ĉa(±T,x) |q±〉 ≡ caq± (x) |q
±〉 ,

ĉ
a
(±T,x)|q±〉 ≡ caq± (x) |q

±〉 ,

ψ̂a(±T,x) |q±〉 ≡ ψaq± (x) |q
±〉 ,

̂ψ
a

(±T,x) |q±〉 ≡ ψ
a

q± (x) |q
±〉 .

The explicit construction of the field operators for
gauge theory in the holomorphic representation is done
in [29]. This representation is the most convenient one for
the construction of the basis states |q±〉 [30]. Inserting the
completeness relation at the instants −T and T leads to

Z0
[
j, η, η̄, ξ, ξ̄

]

= lim
T→∞

∑

q,q+

〈Ψ |q+〉〈q+|U(+T,−T |j, η, η̄, ξ, ξ̄)|q−〉〈q−|Ψ〉

= lim
T→∞

∑

q,q+

〈Ψ |q+〉
1

N

∫

DΦ exp

{

i

∫ T

−T
dt

∫

dx

×

(
1

2
Aaµ

[

∂2gµν −

(

1−
1

α

)

∂µ∂ν
]

Aaµ

)}

(48)

× exp

{

i

∫ T

−T
dt

∫

dx
(
−i∂νc

a∂νc+ψ ( iγν∂ν −m)ψ

+ jA+ ξ c+ c ξ+η ψ+ψ η
)
}

〈q−|Ψ〉 ,

where DΦ means the path integral differential
D{A, c, c, ψ, ψ}, and the usual representation for the ma-
trix element 〈q+|U(+T,−T |J, η, η̄, ξ, ξ̄)|q−〉 of the evolu-
tion operator between eigenstates of the fields has been
used [29];N is the usual source-independent normalization
constant fixing Z0[0] = 1. The (q

−- and q+)-dependence of
the functional integral is contained in the boundary con-
ditions of the field integration variables, which should be

fixed to the eigenvalues Aa
q±,µ
, ca
q±
, ca
q±
, ψa
q±
, ψ
a

q± at the
times ±T , respectively.
By inserting (48) in (47), and acting with the interac-

tion part of the action (expressed in terms of the functional
derivatives) on Z0, it follows that

Z =exp

{

i

[
Sgikl
3!i3

δ3

δjiδjkδjl
+
Sgiklm
4!i4

δ4

δjiδjkδjlδjm

+
Sghikl
2!i3

δ3

δη̄iδjkδ (−ηl)
+
Sqikl
i3

δ

δξ̄iδjkδ (−ξl)

]}

×Z0
[
j, η, η̄, ξ, ξ̄

]

= lim
T→∞

∑

q,q+

〈Ψ |q+〉

∫

DΦ

× exp

{

i

∫ T

−T

∫

dtdx

(
1

4
F aµνF

µν,a−
1

2α
∂νAaν∂

µAaµ

− i∂νc
aDab,νcb

)}

(49)

× exp

{

i

∫ T

−T

∫

dtdx
(
ψ(iγνDν−m)ψ+ jµA

µ+ ξ c

+ c ξ+η ψ+ψ η
)
}

〈q−|Ψ〉 .

It can be noted that performing the derivatives over the
sources of the interaction Lagrangian inside the integrand
of the Gaussian functional integral is equivalent to adopt-
ing a perturbative definition of the functional integral for
the interacting theory, as discussed in [31].
That is, the classical action defining the complete gen-

erating functional as a functional integral is exactly the
same as for the usual PQCD. The changes in the diagram-
matic expansion are thus only associated to the boundary
conditions at −T and +T . It should be noted that for the
case of PQCD the wave functions Φ(q±) = 〈q±|0〉 are spe-
cific Gaussian functions of the field components. It can be
shown that the 〈q±|Ψ〉 are also Gaussian wave functions,
but defined by a different quadratic form as the argument
of the exponentials.
Therefore, it can be concluded that all Ward identities

of the usual PQCD should also be satisfied in the modified
expansion. Since the action is identical, it therefore has the
same BRST invariance transformation:

δAaµ(x) = δλD
ab
µ c
b(x) ,

δca(x) =−
g

2
δλfabccb(x)cc(x) , δca(x) =−iδλ∂µA

µ,a(x) ,

δψ(x) = igδλca(x)Taψ(x) , δψ(x) =−igδλc
a(x)ψ(x)Ta ,

which, thanks to its Jacobian, equal to the unit, and after
having been applied as a change of variables in (49), leads



A. Cabo, M. Rigol: Gauge-invariance properties and singularity cancellations in a modified PQCD 107

to the functional form of the WTS identities:

∫

dx

{

jµ (x)Dabµ
δ

iδj(x)

δ

iδξ̄b(x)

+
g

2
ξ
a
(x) fabc

δ

iδξ
a
(x)

δ

iδξ
a
(x)

− iξa (x) ∂µ
δ

iδjaµ(x)
− ig

δ

iδηr(x)

δ

iδξ̄a(x)
T rsa η

s(x)

− igηs(x)
δ

iδξ̄a(x)
T sra

δ

iδηr(x)

}

Z
[
j, η, η̄, ξ, ξ̄

]
= 0 .

To satisfy these relations implies that the mean values
for physical quantities should be gauge invariant, as was
demonstrated in general form in [23–25].
It should be remarked that the proof of the gauge in-

variance of the S matrix heavily relies on the existence of
a mass shell defining the asymptotic states for the par-
ticles. But precisely QCD is expected to show the absence
of these exact mass shells for its elementary fields: the
quarks and gluons. As has already been evaluated in [4],
these mass shells for quark and gluons are not following in
the first approximation in the condensate parameters and
coupling constant.
In ending this section, it can be noticed that the above

outcome was suggested by the fact that the new propa-
gators also are inverse kernels of the equations of motion
of the free fields in massless QCD, as indicated by the
relations
[

k2gµα−

(

1−
1

α

)

kµkα

]

×

{
1

k2+iε

[

gαν −
(1−α)kαkν
(k2+iε)

]

− igανCg δ(k)

}

= gµν ,

(50)

−γµk
µ

[
−γµkµ

k2+iε
+iCfIδ(k)

]

= I, k2
(

1

k2+iε

)

= I .

(51)

5 Gauge invariance in order g2

Let us now study the validity of the general gauge-
invariance properties that were obtained by means of the
formal path integral procedures. The new expansion now
has these three parameters: the coupling constant g and
the two new independent and dimensional ones associated
to the gluon and fermion condensates. Therefore, the in-
variance properties for a given quantity should be obeyed
in each order of a triple Taylor expansion in those con-
stants. The validity of the α-independence will be exam-
ined for the expansion of some quantities up to the second
order in g and any order in the other two constants. In the
first place the transversality of the gluon self-energy, which
is one of the basic WTS identities, will be shown to be
satisfied by the gluon self-energy in the above-mentioned

orders. Afterwards, in the same approximation, the dimen-
sionally regularized effective action will also be shown to be
gauge-parameter independent. In what follows, the wavy
gluon and straight quark lines appearing in the Feynman
diagrams without any addition will mean the complete free
propagators, including the Feynman as well as the con-
densate components. The same lines including a central
empty circle will indicate the Feynman part of the prop-
agators (incorporating its α-dependence), and the lines
showing a central black dot will represent the condensate
parts. A wavy line including a central transversal cutting
segment will mean the usual gluon propagator in the Feyn-
man gauge, having a gµν Lorentz tensor structure. Finally,
a wavy line, but including a central collinear segment,
will represent the “longitudinal” part of the gluon propa-
gator, showing the Lorentz tensor structure (1−α)pµpν .
This term includes the whole α-dependence of the free
propagators.

5.1 Transversality of Πµν in order g2

Figure 1 shows the diagrams contributing to the polar-
ization operator up to the second order in g. Therefore,
collecting the terms in these expressions having a certain
definite order in each of the two condensate parameters will
define the expansion coefficients of the polarization ten-
sor in the series of the three parameters. All the terms of
non-vanishing order in the condensate parameters are asso-
ciated to the last four diagrams in Fig. 1.
The first four diagrams in this figure represent the usual

second-order contribution to Πµν , which is known to be
transversal. The condensate-dependent term can also be
represented as in Fig. 2.
Note the absence of terms coming from the quark con-

densate. This is a consequence of the vanishing of these
terms, which is directly due to the fact that a trace of an
odd number of γ matrices appears in their analytic expres-
sions. Further the last two diagrams in Fig. 2 were the ones

Fig. 1. The diagrams contributing to the polarization tensor
up to the second order in g and all orders in the condensate
parameters
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Fig. 2. Condensate dependent contributions to the polariza-
tion tensor

evaluated in [4] in the Feynman gauge and whose result is
transversal. Finally, the analytic expression of the first dia-
gram can be written in the form

Tµν =
(1−α)Cq
(2π)Di

(−g2)fa1a2afa1a2bVαβµ(0, p,−p)g
αα′

×Vα′σν(0, p,−p)
pβpσ

(p2)2
,

which, after employing the function defining the 3-gluon
vertex [27]

Vµ1µ2µ3(k1, k2, k3) =(k1−k2)µ3gµ1µ2 +(k2−k3)µ1gµ3µ2
+(k3−k1)µ2gµ1µ3 ,

leads to

T abµν =
(1−α)Cqg2

(2π)Di
fa1a2afa1a2b

(

gµν −
pµpν

p2

)

,

showing the transversality of the polarization tensor up to
second order in g and all orders in the gluon and quark con-
densate parameters. The α-independence of the effective
action in the same approximation will be studied below.

5.2 α-independence of the effective action
in order g2

Figure 3 shows the terms of order 2 in the coupling con-
stant (and any order in the other two parameters) of the
effective action, evaluated at the zero value of the exter-
nal fields. Expanding the gluon propagator as a sum of its
Feynman gauge component plus the longitudinal and con-
densate parts; and the quark one as the usual Feynman
propagator plus the quark−condensate part, the effective
action can be expressed as shown in Fig. 3.
Observing this figure, it can be noted that the whole α-

dependent contribution is given by the first four diagrams.
However, the first two of them vanish because the longitu-
dinal propagator is contracted with the polarization ten-
sor in the g2 approximation, which is transverse. Further,
the third term also vanishes thanks to the fact that the
longitudinal propagator is contracted with the particular
self-energy part, which was shown, in the last subsection,
to be transverse by itself. Finally, the self-energy quark
term in the fourth diagram identically vanishes, because
it contains a trace of an odd number of γ matrices. This
completes the proof of the gauge invariance of the effect-
ive action in second order in the coupling constant and any
order of the condensate parameters.

Fig. 3. Diagrams representing the contributions to the effect-
ive action in the second order in g and all orders in the gluon
and quark condensates

In concluding this section it can be remarked that since
massless QCD has no initial dimensional parameter, the
removal of the dimensional regularization in the diagrams
of the theory can be done only after partial summations
are performed. These summations, then, will input the new
dimensional parameters associated to the condensates, im-
plementing in this way the dimensional transmutation ef-
fect [32]. This and other issues are expected to be ad-
dressed in our next work.

6 Summary

The gauge-invariance and regularization properties of the
perturbative expansion for QCD considered in [2–4, 6] was
investigated. If follows that the singularities produced by
the Dirac delta-function form of the new terms added to
the gluon and quark propagators can be properly elimi-
nated by combining dimensional regularization [26] with
the infrared regularization procedure for the operator
quantization of gauge theories [22]. The dimensional exten-
sion allows one to cancel the singular diagrams in which
factors δ(0) appear due to the momentum conservation
laws at vertices, when all lines arriving are associated to
condensate δ-like contributions. Further, the Nakanishi in-
frared procedure allows one to get rid of the singularities
in the form of a Feynman propagator evaluated at zero
momentum.
Those factors appear when n−1 lines joined to a ver-

tex of n legs are of the condensate kind and the remain-
ing one is a Feynman propagator. In connection with the
gauge-invariance properties, it is argued that the modi-
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fied expansion should satisfy the same WTS identities as
the usual PQCD. In addition, it follows that the formal
functional integral representation of the generating func-
tional of the Green functions only differs from the one
associated to PQCD in the boundary conditions for the
fields at t = ±∞. The formal functional integral results
are checked in the second order in the coupling constant
and any order in the condensate parameters. Firstly, the
transversality of the gluon self-energy in the mentioned
orders is shown. Afterwards, the contributions to the ef-
fective action evaluated at vanishing values of the mean
fields are shown to be gauge-parameter independent. This
work is expected to be extended in various directions. One
of them is to implement the partial summations of the di-
agrams, the possibility of which was advanced in the text.
This is needed in order to make the dimensional transmu-
tation effective, thus allowing one to perform a calculation
depending on the new dimensional condensate parameters.
Another activity to be considered will be to specify the
renormalization procedure, which in the present problem
involves three parameters. Finally, a task of direct physical
interest will be to incorporate knowledge of the invariance
properties gained in the present work. It could bring about
a better understanding of the results for the effective po-
tential obtained in [33], in the Feynman gauge α = 1. The
effective potential calculated in this work gave signals of
a strong instability of massless QCD, under the generation
of a quark condensate. But it was precisely the possibility
of this outcome that was the main motivation for introduc-
ing the quark condensate in the initial free vacuum in [4, 6].
Therefore, the check of the re-appearance of the instability
result within a gauge invariant calculation will give further
support to the dynamical generation of quark masses and
condensates within massless QCD.
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Appendix A: Kugo–Ojima quantization
procedure for QCD

The main elements of the Kugo−Ojima operator quantiza-
tion of the free massless QCD for an arbitrary gauge pa-
rameter α will be reviewed in this appendix. The formulae

will be used in the construction of the modified perturba-
tive expansion done in Sect. 2. The classical action for the
interacting fields in the Kugo–Ojima analysis has the form

S =

∫

dx (Lg+Lgh+LB+Lq) ,

Lg =−
1

4
F aµν(x)F

aµν(x) , Lgh =−i∂
µca(x)Dabµ (x)c

b(x) ,

Lq = ψ
r
(x)(iγµDrsµ (x)−mδ

rs)ψs(x) ,

F aµν(x) = ∂µA
a
ν −∂νA

a
µ+ gf

abcAbµA
c
ν ,

Dabµ (x) = δ
ab∂µ− gf

abcAcµ , D
rs
µ (x) = δ

rs∂µ− gT
rs
c A

c
µ ,

with

[Ta, Tb] = if
abcTc .

The equations of motion for the gluon, quarks, ghosts
and auxiliaryB fields for a gauge parameterα in the Kugo–
Ojima quantization scheme for free massless QCD can be
written as [19, 20]

∂2Aaµ (x)− (1−α)∂µ B
a (x) = 0 ,

∂µAaµ (x)+αB
a (x) = 0 ,

∂2Ba (x) = ∂2 ca (x) = ∂2 ca (x) = (i γµ∂µ −m)ψ(x)

= 0 , (A.1)

where, for the moment, quark fields are also considered as
having an auxiliary small mass m. The notation for the
Lorentz indices and field quantities will follow the one used
in [27]. In the case of a general value of α, the solution for
the gluon field operator is the only one that differs from
its counterpart in the Feynman gauge α = 1, which was
considered in [3]. As derived in [19, 20], the non-vanishing
commutation relations among the fields have the forms

[
Aaµ (x) , A

b
ν (y)

]
=δab [−gµνD (x−y|0)

+ (1−α)∂µ∂νE (x−y)] ,
[
Aaµ (x) , B

b (y)
]
=δab [−∂µD (x−y|0)] ,

{
ca (x) , cb (y)

}
=iδabD (x−y| 0) ,

{
ψ (x) , ψ (y)

}
=(iγµ∂µ+m)D (x−y| 0) ,

D (z|m) =
1

(2π)3

∫

dk s(k0)δ(k
2−m2) exp(−ikz) ,

E (z) =
1

(2π)3

∫

dk s(k0)δ
′(k2) exp(−ikz) ,

(A.2)

with

s(x) = θ(x)− θ(−x) .

The invariant function E appears in the commutation
relations for the gluon field when the gauge parameter dif-
fers from the Feynman gauge value α= 1, since not all the
gluon fields satisfy the d’Alembert equation. More gener-
ally, functions E(·) are associated to each of the invariant
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functions D,D+, D− andDF according to

E(·) (z) =− lim
m→0

∂

∂m2
D(·) (z |m)

=
1

2

1

∇2z

(

z0
∂

∂z0
−1

)

lim
m→0

D(·) (z |m) ,

(A.3)

where (·) means any of the subindices of the functions
D,D+, D− orDF.
The gluon and Nakanishi B-field operators solving the

above equations of motion are given as [19, 20]

Aaµ (x) =
∑

k

(
∑

λ=1,2

Aak,λf
λ
k,µ (x)+A

L,a
k fk,L,µ (x)

+Bak

[
fk,S,µ (x)+ (1−α)∂µD

(1/2)
(x) gk(x)

]
)

+h.c.,

Ba(x) =
∑

k

Bakgk(x)+h.c. , c
a (x) =

∑

k

cakgk(x)+h.c. ,

ca (x) =
∑

k

cakgk(x)+h.c. , (A.4)

ψ(x) =
∑

k,s

1
√
2V

[
asku

s
k exp(−ikx)+ b

s+
k v

s
k exp(−ikx)

]
,

ψ(x) =
∑

k,s

1
√
2V

[
bskv

s
k exp(ikx)+a

s+
k u

s
k exp(−ikx)

]
,

where h.c. means the Hermitian conjugate of the previous
term. The wave packets g and f , the polarization vectors
εσµ (k), εL, µ (k), εS, µ (k), the Dirac spinor u and v, and the

integro-differential operator D
(1/2)
(x) appearing in (A.4) are

defined by [19, 20]

gk (x) =
1

√
2V k0

exp (−ikx) ,

fλk,µ (x) =
1

√
2V k0

ελµ (k) exp (−ikx) ,

where kx= k0x0−kx, k0 = |k| ,

k · ελ (k) = 0, ελ0 (k) = 0, ε
λ (k) · ετ (k) = δλτ ,

for λ, τ = 1, 2,

εL,µ (k) =−i kµ =−i (|k|,−k) ,

εS,µ (k) =−i
kµ

2 |k|2
=
−i (|k|,k)

2 |k|2
,

D
(1/2)
(x) ≡

1

2
(∇2)−1(x0∂0−1/2),

usk ≡ u
s(k) =

√
m+k0

(
us(0)
σk
m+k0

us(0)

)

,

vsk ≡ v
s(k) =

√
m+k0

(
σk
m+k0

vs(0)

vs(0)

)T

. (A.5)

The operator D
(1/2)
(x) works as an “inverse” of the d’Alem-

bertian for simple pole functions [22], that is

∂2D
(1/2)
(x) f (x) = f (x) if ∂2 f (x) = 0 .

A large cubic box of volume V = L3 in a particular
Lorentz reference frame is assumed for the imposition of
periodic boundary conditions on the fields. Accordingly,
the spatial momenta in the above sums take the values
k = 2π

L
(n1, n2, n3), for arbitrary integers n1, n2 and n3.

The four-vectors for all the particles but the quarks are null
ones, k = (|k |,k), and for the quarks k = (

√
|k |2+m2, k).

The matrix below shows the commutation relations be-
tween the creation and annihilation operators for the var-
ious fields:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A
a′+
k′,λ′

A
L,a′+
k′

B
a′+
k′

c
a′+
k′

c
a+
k′

a
r′+
k′

b
r′+
k′

Aak,λδ
aa′δ

kk′δλλ′ 0 0 0 0 0 0

A
L,a
k

0 0 −δaa
′
δ
kk′ 0 0 0 0

Ba
k

0 −δaa
′
δ
kk′ 0 0 0 0 0

cak 0 0 0 0 iδaa
′
δ
kk′ 0 0

cak 0 0 0 −iδaa
′
δ
kk′ 0 0 0

ark 0 0 0 0 0 δrr
′
δ
kk′ 0

br
k

0 0 0 0 0 0 δrr
′
δ
kk′

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(A.6)

Appendix B: Longitudinal and scalar modes
contribution

The longitudinal and scalar modes contribution is deter-
mined by the expression

〈0 | exp
[
C∗3 (α, P )B

a
pi
AL,api +D

∗ (α, P )BapiB
a
pi

]

× exp

{

i

∫

dxJµ,a (x)
(
AL,a+pi

f∗pi,L,µ (x)+B
a+
pi

[
f∗pi,S,µ (x)

+ (1−α)
(
A∗ (p0, x0) f

∗
pi,L,µ

(x)+B∗µ (pi, x)
)])

}

× exp

{

i

∫

dxJµ,a (x)
(
AL,api fpi,L,µ (x)+B

a
pi

[
fpi,S,µ (x)

+ (1−α)
(
A (p0, x0) fpi,L,µ (x)+Bµ (pi, x)

)])
}

× exp
[
C3 (α, P )B

a+
pi
AL,a+pi

+D (α, P )Ba+pi B
a+
pi

]
| 0〉 .

(B.1)

As in [3, 5], we first calculate

exp

{

i

∫

dxJµ,a (x)
(
AL,api fpi,L,µ (x)+B

a
pi

[
fpi,S,µ (x)

+ (1−α)
(
A (p0, x0) fpi,L,µ (x)+Bµ (pi, x)

)])
}

× exp
[
C3 (α, P )B

a+
pi
AL,a+pi

+D (α, P )Ba+pi B
a+
pi

]
| 0〉

= exp

{

C3 (α, P )

(

Ba+pi − i

∫

dxJµ,a (x) fpi,L,µ (x)

)
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×

(

AL,a+pi
− i

∫

dxJµ,a (x)
[
fpi,S,µ (x)+ (1−α)

×
(
A (p0, x0) fpi,L,µ (x)+Bµ (pi, x)

)]
)

+D (α, V )

(

Ba+pi − i

∫

dxJµ,a (x) fpi,L,µ (x)

)

×

(

Ba+pi − i

∫

dxJµ,a (x) fpi,L,µ (x)

)}

| 0〉 . (B.2)

A similar expression is obtained acting to the left in (B.1).
Substituting the above results in (B.1), and introducing

the following notation:

C∗ ≡ C∗3 (α, P ) , C ≡ C3 (α, P ) ,

D∗ ≡D∗ (α, P ) , D ≡D (α, P ) ,

Â+ ≡AL,a+pi
, Â≡AL,api , B̂

+ ≡Ba+pi , B̂ ≡B
a
pi
,

a1 ≡−i

∫

dxJµ,a (x)
[
f∗pi,S,µ (x)+ (1−α) (A

∗ (p0, x0)

× f∗pi,L,µ (x)+B
∗
µ (pi, x)

)]
,

a2 ≡−i

∫

dxJµ,a (x)
[
fpi,S,µ (x)+ (1−α) (A (p0, x0)

× fpi,L,µ (x)+Bµ (pi, x)
)]
,

b1 ≡−i

∫

dxJµ,a (x) f∗pi,L,µ (x) ,

b2 ≡−i

∫

dxJµ,a (x) fpi,L,µ (x) , (B.3)

one obtains

〈0 | exp
{
C∗

(
Â+a1

)(
B̂+ b1

)
+D∗

(
B̂+ b1

)(
B̂+ b1

)}

× exp
{
C
(
B̂++ b2

)(
Â++a2

)

+ D
(
B̂++ b2

)(
B̂++ b2

)}
| 0〉 . (B.4)

Following exactly the same procedure previously de-
scribed in [3, 5], a recurrence relation is obtained for (B.4):

exp

{

C∗a1b1+D
∗b21+[C (C

∗a1−a2)+2CD
∗b1]

× (C∗b1− b2)
n∑

m=0

[
|C|2(2m)+ |C|2(2m+1)

]
+(C∗b1− b2)

2

×

(

D

n∑

m=0

[
(2m+1) |C|2(2m)+2 (m+1) |C|2(2m+1)

]

+C2D∗
n∑

m=0

[
2m |C|2(2m−1)+(2m+1) |C|2(2m)

]
)}

×〈0 | exp
{
C∗ÂB̂+D∗B̂B̂

}

× exp
{
C∗n+1Cn+1 (C∗b1− b2) Â

+
[
C∗n+1Cn+1 (C∗a1−a2)+2C

∗n+1Cn+1D∗b1

+ 2C∗nCn (n+1) (C∗D+CD∗) (C∗b1− b2)] B̂
}

× exp
{
CB̂+Â++DB̂+B̂+

}
| 0〉 . (B.5)

We then assume that |C|< 1 so that

lim
n→∞

|C|2n = lim
n→∞

n |C|2n = 0,

lim
n→∞

n∑

m=0

[
|C|2(2m)+ |C|2(2m+1)

]
=

1
(
1−|C|2

) ,

lim
n→∞

n∑

m=0

[
(2m+1) |C|2(2m)+2 (m+1) |C|2(2m+1)

]

=
1

(
1−|C|2

)2 , (B.6)

which allows one to rewrite (B.5) as

exp

{

C∗a1b1+D
∗b21+[C (C

∗a1−a2)+2CD
∗b1]

×
(C∗b1− b2)
(
1−|C|2

) +(C∗b1− b2)
2

(
D+C2D∗

)

(
1−|C|2

)2

}

〈0 | exp
{
C∗ÂB̂+D∗B̂B̂

}
exp

{
CB̂+Â++DB̂+B̂+

}
| 0〉.

(B.7)

Replacing the compact notation (B.3) in (B.7), and ex-
panding all functions of pi in the vicinity of pi = 0 (keeping
in mind that the sources are located in a finite space re-
gion), it is sufficient to consider only the first term in all
expansions. After that (B.7) takes the form (26).
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rior de Ciencias y Tecnoloǵıa Nucleares, La Habana, Cuba,
1999

6. A. Cabo, JHEP 04, 044 (2003) [hep-ph/0209215(2002)]
7. G.K. Savvidy, Phys. Lett. B 71, 133 (1977)
8. I.A. Batalin, S.G. Matinyan, G.K. Savvidy, Sov. J. Nucl.
Phys. 26, 214 (1977)

9. A. Cabo, O.K. Kalashnikov, A.E. Shabad, Nucl. Phys. B
185, 473 (1981)

10. W. Dittrich, M. Reuter, Phys. Lett. B 128, 321 (1983)
11. P. Hoyer, HIP-2002-44-TH, September 2002. 3pp.; Talk
given at 31st International Conference on High En-
ergy Physics, ICHEP 367-369, Amsterdam (2002) [hep-
ph/0209318]



112 A. Cabo, M. Rigol: Gauge-invariance properties and singularity cancellations in a modified PQCD

12. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys.
B 147, 385, 448, 519 (1979)

13. R. Fukuda, Phys. Rev. D 21, 485 (1980)
14. K.G. Chetyrkin, S. Narison, V.I. Zakharov, Nucl. Phys. B
550, 353 (1999)

15. S.J. Huber, M. Reuter, M.G. Schmidt, Phys. Lett. B 462,
158 (1999)

16. P. Hoyer, NORDITA – 96/63 P (1996), hep-ph/9610270
(1996); P. Hoyer, NORDITA – 97/44 P (1997), hep-
ph/9709444 (1997)

17. H.J. Munczek, A.M. Nemirovsky, Phys. Rev. D 55, 3455
(1983)

18. C.J. Burden, C.D. Roberts, A.G. Williams, Phys. Lett. B
285, 347 (1992)

19. T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl. 66, 1
(1979)

20. N. Nakanishi, I. Ojima, Covariant operator formalism of
gauge theories and quantum gravity, (Singapore, Word Sci-
entific, 1990)

21. H.P. Pavel, D. Blaschke, V.N. Pervushin, G. Röpke, Int. J.
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